ACHIEF

MIDTERM-WORKSHOP

MACHIEF

December 2022

December 2022

ACHIEF

OBJECTIVES & APPLICATIONS

- To develop novel Cr-steel grades with improved creep resistance (by 15%) with respect to standard martensitic steel grades, such as X20, P91, P92, T115 (reference)
- To optimize heat treatment conditions for an improved control of the microstructure and precipitates (carbides, Laves phase, etc) during tempering

Oil and gas, chemical and petrochemical, power generation, heat transfer, automotive, mechanical and construction industries

ACHIEF

CASE STUDY

Petrochemical use case description (TUPRAS)								
Main targets of the demonstration								
 To improve the service life of pipelines and components within the petrochemical installation due to increased corrosion and erosion resistance of PDC coatings applied in the interior side of equipment and piping components. To improve the energy efficiency of the boiler due to a reduction of heat required to meduce store burging. Cristical pipes with higher error projectment that enables 								
 to produce steam by using Cr-steel pipes with higher creep resistance that enable to use reheater tubes with lower wall thickness. To improve efficiency of the oil refinery process by generating steam inside the 								
 boiler with less fuel consumption due to reduce corrosion of the boiler steel pipes made of new Cr-steel. To reduce CO₂ emissions due to less energy required to generate steam in the boiler inside the petrochemical plant and release throughout the installation due 								

December 2022

MACHIEF

$\textsf{DILATOMETRY} {\rightarrow} \textsf{LAB SCALE} {\rightarrow} \textsf{PREINDUSTRIAL SCALE}$

December 2022

LABORATORY CASTINGS

Cutting into 2 sets of samples

1st set of samples Design processing routes: Dilatometry + Characterisation Decide the optimum processing route

2nd set of samples Apply the optimum processing route: Processing at lab-scale

ACHIEF

December 2022

DILATOMETRY STUDY

DILATOMETRY:

NORMALIZING \rightarrow CRITICAL TEMPERATURES \rightarrow THERMAL TREATMENTS DESIGN

THERMAL TREATMENTS APPLICATION \rightarrow CHARACTERIZATION \rightarrow SELECTION OF THERMAL TREATMENTS

Standard thermal treatment TT1, similar for all the steel grades: based on a normalizing & tempering treatment

 $\overline{\mathbb{Q}}$

Two innovative thermal treatments TT2, also based on a normalizing & tempering treatment but interrupted by a martensitization step at:
i) MT10 to retain 10% of austenite
ii) MT30 to retain 30% of austenite

Name of the steel grade-TT1 Name of the steel grade-TT2-MT10 Name of the steel grade-TT2-MT30

December 2022

T115		V	V1		V2		V3		V4	
	MT10	MT30								
	271	307	289	323	303	337	286	321	283	319

DILATOMETRY SAMPLES

Microstructure of the different steel grades after the thermal treatments applied by dilatometry:

For all the samples, TT1 & TT2-MT10: tempered martensite within PAGs of different size. TT2-MT30: tempered martensite and fresh martensite are formed within PAGs of different size. In particular, in V2-TT2-337, very angular tempered and fresh martensites are observed. For high MT TT2, ferrite traces are found in the PAG boundary of T115, V1, V3 dilatometry samples.

DILATOMETRY SAMPLES

Vickers hardness (HV100) of the dilatometry samples after thermal treatments:

T115-TT1	V1-TT1	V2-TT1	V3-TT1	V4-TT1
251.94	255.54	254.58	236.56	236.86
T115-TT2-271	V1-TT2-289	V2-TT2-303	V3-TT2-286	V4-TT2-283
296.74	277.56	279.38	288.06	298.94
T115-TT2-307	V1-TT2-323	V2-TT2-337	V3-TT2-321	V4-TT2-319
318.54	371.16	377.18	308.75	313.72

For all the steel grades, the introduction of a martensitization step increases the hardness. Especially for higher MT (MT30 vs. MT10) due to more retained austenite and thus a higher percentage of fresh martensite after tempering.

Based on hardness, the higher MT thermal treatment (TT2-MT30) was selected instead of the lower MT thermal treatment (TT2-MT10) to be applied at lab-scale. Additionally, the standard thermal treatment TT1 for comparison.

December 2022

DILATOMETRY SAMPLES \rightarrow LAB SCALE

APPLICATION OF SELECTED THERMAL TREATMENTS AT LAB SCALE:

 STANDARD TT1

 1050°C
 765°C

 RT
 RT

 RT
 RT

 1150°C
 750°C

 MT30
 MT30

(optimum processing route)

- The thermal treatments selected for each steel grade (optimum processing route) are applied later on at lab-scale
- On cylinders of approximately 45 mm in diameter and 100 mm in length (second set of samples taken from the forged bars).
- By means of muffle-type furnaces and a salt-bath installation (processing at lab-scale)

December 2022

Microstructural and mechanical characterization of samples after lab-scale processing

Short-time creep tests at 1 temperature, and 3 different stress values. Time values for creep tests will be extended to 3300 h as a minimum. At least one of the creep tests will exceed 3300 h

Selection of steel grade (composition + processing route) offering the best overall creep behaviour \rightarrow \rightarrow for fabrication at preindustrial scale

December 2022

Analysis LOM

XRD

LAB SCALE CYLINDERS:

T115, V1, V2, V3, V4 with TT1 & TT2: 10 lab samples:

December 2022

December 2022

MACHIEF

December 2022

Counts

	T115-TT1	T115-TT2	V1-TT1	V1-TT2	V2-TT1	V2-TT2	V3-TT1	V3-TT2	V4-TT1	V4-TT2
HV (10)	260	266	251	280	243	276	255	258	266	262
Yield Strength (MPa)	646	627	633	722	621	661	641	629	647	600
Tensile strength (MPa)	770	801	752	876	736	809	763	795	768	777
Elongation (%)	19	21	19	19	19	18	19	20	18	19
Reduction of Area (%)	64	64	65	65	67	64	66	66	66	65

Corrosion at 600°C

Test sample	Mass increase (g/mm ²) 1000 h	Mass increase (g/mm ²) 2000 h	Mass increase between 1000 – 2000 h
V1-TT1	0.418	0.450	0.032
V1-TT2	0.501	0.570	0.069
V2-TT1	0.506	0.590	0.084
V2-TT2	0.635	0.754	0.119
V3-TT1	0.384	0.431	0.047
V3-TT2	0.396	0.429	0.034
V4-TT1	0.459	0.510	0.051
V4-TT2	0.458	0.509	0.051
T115-TT1	0.357	0.388	0.031
T115-TT2	0.416	0.465	0.049

ACHIEF

December 2022

Short-time creep tests at 650°C, and 3 different stress values

Finished
In course

	TT1			
	105	90°C		
		RT	765°C	r
Steel grade	TT1	σ(MPa)	Time (h)	Elong. (%)
T115 - ref	TT1	115	591.5	9.17
T115 - ref	TT1	88	3726	15.59
T115 - ref	TT1	72	4590.75	1.804
V1	TT1	115	1297.75	7.13
V1	TT1	88	2695.5	0.944
V1	TT1	72	2695.5	0.601
V2	TT1	115	213.75	21.44
V2	TT1	88	697.25	25.7
V2	TT1	72	1862.5	38.633
V3	TT1	115	939.75	10.45
V3	TT1	88	2372	12.58
V3	TT1	72	2695.5	1.759
V4	TT1	115	423.5	18.73
V4	TT1	88	2695.5	4.183
V4	TT1	72	2695.5	1.087

Steel grade	TT2	σ(MPa)	Time (h)	Elong. (%)
T115	TT2	115	2235.5	6.15
V1	TT2	115	4590.75	0.462
V1	TT2	88	1543	0.194
V2	TT2	115	3236.75	5.342
V2	TT2	88	1543	0.362
V3	TT2	115	2285.5	15.3249
V3	TT2	88	1543	0.411
V4	TT2	115	3745.25	12.195
V4	TT2	88	1543	0.306

Still in course with too room for elongation improvement

$\mathsf{LAB}\,\mathsf{SCALE}\to\mathsf{PREINDUSTRIAL}\,\mathsf{SCALE}$

Selection of Best steel grade (composition + processing route) offering the best overall creep behaviour

Fabrication at Preindustrial scale

December 2022

PREINDUSTRIAL SCALE

Pre-industrial castings (700 kg) and chemical analysis

- 1 Best candidate steel grade
- 1 Reference steel grade for comparison
- Chemical analysis

Pre-industrial tubes (700 kg): Rolling + Thermal Treatment

 700 kg ingots will be used to fabricate pilot-tubes with a thickness in the range of 7 to 10 mm (the thermal treatment route defined at lab-scale will be adapted and implemented at pilot scale including the necessary hot-rolling steps)

The pilot tubes will be validated in WP7

December 2022

PREINDUSTRIAL SCALE

PREINDUSTRIAL CASTING OF T115 REFERENCE STEEL

Composition	с	Si	Mn	Р	S	Cr	Ni	Мо	AI	Cu	Ti	v	w	Nb	N
PREIND T115REF	0.08-0.12	0.20-0.40	0.35-0.55	<0.02	<0.01	10.4-11.2	0.1-0.2	0.4-0.5	<0.015	<0.2	<0.01	0.19-0.24	<0.1	0.02-0.06	0.035-0.065

AFTER SHOT BLASTING, BEFORE MACHINING & ROLLING TO PILOT TUBE

MACHIEF

December 2022

FUTURE WORK

- Complete LAB SCALE Creep characterization
- Selection of steel grade (composition + processing route) offering the best overall behaviour FOR
- Fabrication at PREINDUSTRIAL SCALE (reproduce composition & treatment as preindustrial ingots for pilot tubes to be validated in WP7)

Thank you

December 2022

